
Clever Computers: Playing
Tic-Tac-Toe

In this chapter we are going to create a version of the game tic-tac-toe in which you are
pitted against an intelligent computer opponent. This opponent must have a strategy that will
regularly beat the player to keep it challenging, but the computer opponent must not be too
strong; otherwise the player has no chance of winning, and will quickly become frustrated and
give up. We will also show how the computer can adapt its play to the level of the player. The
game will be almost completely written using the GML programming language, so make sure
you read and understood Chapter 12 on GML before starting this chapter.

Designing the Game: Tic-Tac-Toe
I am sure you’ll know how to play Tic-Tac-Toe, but even so, it is good to describe it carefully
before we start to aid you in making the game.

The game of Tic-Tac-Toe is played on a 3✕3 grid. The computer player uses red stones while
the human player uses blue stones. The players take turns placing a stone of their color on an
empty cell. When a player manages to create a horizontal, vertical, or diagonal row of three
stones of his color, he wins the game. When all cells are filled and no row is created, the game
ends in a draw.

The player uses the mouse to place the stones. The Esc key is used to end the game. The
game consists of an arbitrary number of rounds. In each round the player who lost the previous
round will start. The number of wins for each player and the number of draws are recorded, and
displayed on the game interface for reference. Figure 13-1 shows the game in action.

The game requires just a few ingredients: the playing field, the stones, and a mechanism
to show the number of wins. The most complicated part will be how to determine the moves
for the computer player. All the resources can be found in the Resources/Chapter13 folder on
the CD.

245

C H A P T E R 1 3

Figure 13-1. The Tic-Tac-Toe game looks like this.

The Playing Field
We will first need two sprites for the stones, a background to contain the playing field, and
some sound effects. As this is a game in which the player is supposed to think a lot, back-
ground music is not really appropriate, so we won’t use it.

Creating sprites, a background, and sound effects:

1. Start a new game.

2. Create a new sprite using the file Stone1.gif from the Resources/Chapter13 folder on
the CD.

3. Create another sprite using the file Stone2.gif.

4. Create a background using the file Background.bmp.

5. Finally create sound effects using the files Place.wav, Win.wav, Lose.wav, and Draw.wav.

We will also need a font for our game. We will use this to draw the score, that is, how many
games are won by the player and the computer.

CHAPTER 13 ■ CLEVER COMPUTERS: PLAYING T IC-TAC-TOE246

Creating a font:

1. Create a new font for the game. We named ours fnt_score. Select a nice font; for exam-
ple, Comic Sans MS, give it a size of 16, and select Bold.

The playing field is where all the action happens. We will create just one object in the
game, which represents the playing field, and there will be just one instance of this object in
the game. This object does not need a sprite, as the field is already drawn on the background.

Creating the field object and the room:

1. Create a new object. Give it the name obj_field. No sprite is required.

2. Create a new room. In the backgrounds tab, assign to it the background.

3. In the settings tab, give the room an appropriate caption.

4. In the objects tab, add one instance of the field object at an arbitrary place.

You might want to run the game just to test that the playing field is indeed there. Obvi-
ously, nothing can be done at this stage, as we are yet to specify the behavior for the field
object. We will only use scripts for this.

Internally we represent the playing field with a variable field that will be a two-
dimensional array. This variable represents the cells in the field, as shown in Figure 13-2.
Each entry can have three values: 0 means that the cell is empty, 1 means that the human
player placed a stone there, and 2 means that the computer player placed a stone there.

Figure 13-2. The playing field is represented by a two-dimensional array called field.

Let’s start by creating a script to initialize the field. Call this script scr_field_init. This
script must set all the field entries to 0. We will use two local variables for this, and then use a
double loop to fill in the entries, as shown in Listing 13-1.

CHAPTER 13 ■ CLEVER COMPUTERS: PLAYING T IC-TAC-TOE 247

Listing 13-1. The Script scr_field_init

{
var i,j;
// clear the field
for (i=0; i<=2; i+=1)

for (j=0; j<=2; j+=1)
field[i,j] = 0;

}

■Note Notice the line that starts with //. This line is a comment, so it is not really part of the program.
Comments are ignored by Game Maker, and exist purely to help you, or someone else, know what is going
on in the code—would you remember what all your variables and loops do when coming back to a piece of
code after six months?

The game must store the number of wins by the two players, as well as the number of
draws. For this we will use three variables: score_player, score_computer, and score_draw. To
initialize the game, we must initialize these variables to 0 and we must initialize the playing
field, as shown in Listing 13-2.

Listing 13-2. The Script scr_game_init

{
// initialize the score
score_player = 0;
score_computer = 0;
score_draw = 0;
// initialize the field
scr_field_init();

}

As you can see, we call the first script (scr_field_init) from within this script. Scripts can
be used as functions that can be called from other scripts—we will use this technique a lot in
our game. The scr_game_init script is executed from the Create event of the field object.

Creating and executing the scripts:

1. Create the two scripts, scr_field_init and scr_game_init, as described earlier.

2. Reopen the properties form of the field object by double-clicking on it in the
resource list.

3. Add a Create event. In it include the Execute Script action and indicate the script
scr_game_init.

CHAPTER 13 ■ CLEVER COMPUTERS: PLAYING T IC-TAC-TOE248

The next step is to make it possible for the player to place stones. When the player clicks
the left mouse button on the screen, we must detect which cell the click occurs in. If the click
is outside the playing field or on a cell that is already filled, there will be no resulting action.

To determine the cell that has been clicked, we consider the current position of the
mouse, which is indicated by the global variables mouse_x and mouse_y. The cells each have a
size of 140✕140, so to get the correct cell index (0, 1, or 2), we divide the mouse position by 140
and then round it down to the nearest whole number using the floor() function. This would
give the correct cell index if our playing field were in the top-left corner of the screen. Because
the top-left corner of the field is at position (208,32), we must subtract this offset from the
mouse position, as we want the position relative to the top-left corner of the playing field, not
the top-left corner of the screen.

So, for example, say the human player clicks at x = 350. The sum we do is (350-208)/140 =
1.01. Rounded down, the result is 1, which tells us that the cursor has been clicked inside one
of the middle columns of cells (remember that the array starts at 0, not 1).

If the results of the calculations for x and y are less than 0 or more than 2, we ignore the
click. If they are in this range, we check whether the corresponding cell is empty. If the cell is
empty, we change its value to 1 to place the stone and play the sound effect.

The script looks like the one shown in Listing 13-3.

Listing 13-3. The Script scr_field_click

{
var i,j;
// find the position that is clicked
i = floor((mouse_x-208)/140);
j = floor((mouse_y-32)/140);
// check whether it exists and is empty
if (i<0 || i>2 || j<0 || j>2) exit;
if (field[i,j] != 0) exit;
// set the stone
field[i,j] = 1;
sound_play(snd_place);

}

Note that we use a new statement here: exit. The exit statement ends the execution of
the script. We need to call this script in the Global left pressed event. This event is called when
the left mouse button is pressed anywhere on the screen (not necessarily in the field object).

Creating the mouse click script:

1. Create the script scr_field_click, as shown earlier.

2. Reopen the properties form of the field object by double-clicking on it in the
resource list.

3. Add a Mouse, Global mouse, Global left pressed event. In it include the Execute Script
action and indicate the script scr_field_click.

CHAPTER 13 ■ CLEVER COMPUTERS: PLAYING T IC-TAC-TOE 249

If you run the game now, you will notice that you do hear the sound effect when you click
on a cell but that no stones appear. This makes sense, as we have not yet added any code to
draw the stones. Rather than using stone objects, we will create a script that draws the stones.
Actually, this script will draw everything that is required: the stones and the current score
(remember that the field does not need to be drawn as it is on the background image).

The script (shown in Listing 13-4) consists of two parts. First, all cells that are nonempty
are drawn. We use a double loop for this. Depending on the value of the field cell at that posi-
tion, the red or blue stone sprite is drawn. Second, the score is drawn. For this we set the
correct font and position, and for each line we set a different color. (Note that the function
string() turns a number into a string.)

Listing 13-4. The Script scr_field_draw

{
var i,j;
// draw the correct sprites
for (i=0; i<=2; i+=1)

for (j=0; j<=2; j+=1)
{

if (field[i,j] == 1)
draw_sprite(spr_stone1,0,208+140*i,32+140*j);

if (field[i,j] == 2)
draw_sprite(spr_stone2,0,208+140*i,32+140*j);

}
// draw the score
draw_set_font(fnt_score);
draw_set_halign(fa_right);
draw_set_color(c_blue);
draw_text(200,340,'Player Wins: ' + string(score_player));
draw_set_color(c_red);
draw_text(200,375,'Computer Wins: ' + string(score_computer));
draw_set_color(c_black);
draw_text(200,410,'Draws: ' + string(score_draw));

}

We must call this script in the Draw event of the field object.

Drawing the field:

1. Create the script scr_field_draw as described earlier.

2. Add the Draw event to the field object. In it include the Execute Script action and
indicate the script scr_field_draw.

Now when you test the game, you should be able to place stones. The computer opponent
is not yet doing anything, so only your own stones exist. In the next section we will create
some simple opponent behavior. The current version of the game can be found in the file
Games/Chapter13/tic_tac_toe1.gm6 on the CD.

CHAPTER 13 ■ CLEVER COMPUTERS: PLAYING T IC-TAC-TOE250

Let the Computer Play
In this section, we are mainly going to concentrate on completing the first version of the game
by adding the logic for a simple computer opponent. But first we need some scripts to test
whether the player or the computer won the last game, or if it was a draw. We start with a
script to check whether the player did win. There are eight different lines of three stones that
can be filled to win: three horizontal ones, three vertical ones, and two diagonal ones. In the
script (shown in Listing 13-5), we simply test all of these to see whether the cells contain the
correct value. The function will return either the value true indicating that the player did win,
or false, indicating that the player did not yet win. The value returned by the script can then
be used later as a condition in other scripts. By this point you should know how to create a
script, so we will just show the code from here on out. If you are confused at any point,
remember that the game is available on the CD in Games/Chapter13/tic_tac_toe2.gm6, so
feel free to open it up and have a look.

Listing 13-5. The Script scr_check_player_win

{
if (field[0,0]==1 && field[0,1]==1 && field[0,2]==1) return true;
if (field[1,0]==1 && field[1,1]==1 && field[1,2]==1) return true;
if (field[2,0]==1 && field[2,1]==1 && field[2,2]==1) return true;
if (field[0,0]==1 && field[1,0]==1 && field[2,0]==1) return true;
if (field[0,1]==1 && field[1,1]==1 && field[2,1]==1) return true;
if (field[0,2]==1 && field[1,2]==1 && field[2,2]==1) return true;
if (field[0,0]==1 && field[1,1]==1 && field[2,2]==1) return true;
if (field[0,2]==1 && field[1,1]==1 && field[2,0]==1) return true;
return false;

}

■Note To check whether two values are equal, you must use ==, not =, as a single = is the assignment
operator. Also remember that once a return statement is reached, the rest of the script is not executed.

Checking whether the computer wins is exactly the same, except that this time, we are
testing whether the cells contain values of 2, not 1, as shown in Listing 13-6.

Listing 13-6. The Script scr_check_computer_win

{
if (field[0,0]==2 && field[0,1]==2 && field[0,2]==2) return true;
if (field[1,0]==2 && field[1,1]==2 && field[1,2]==2) return true;
if (field[2,0]==2 && field[2,1]==2 && field[2,2]==2) return true;
if (field[0,0]==2 && field[1,0]==2 && field[2,0]==2) return true;
if (field[0,1]==2 && field[1,1]==2 && field[2,1]==2) return true;
if (field[0,2]==2 && field[1,2]==2 && field[2,2]==2) return true;

CHAPTER 13 ■ CLEVER COMPUTERS: PLAYING T IC-TAC-TOE 251

if (field[0,0]==2 && field[1,1]==2 && field[2,2]==2) return true;
if (field[0,2]==2 && field[1,1]==2 && field[2,0]==2) return true;
return false;

}

Checking for a draw is even simpler (see Listing 13-7)—we check all cells; if one is empty
we return false as there is still a move possible. Only when all cells are filled do we return
true.

Listing 13-7. The Script scr_check_draw

{
var i,j;
for (i=0; i<=2; i+=1)

for (j=0; j<=2; j+=1)
{

if (field[i,j] == 0) return false;
}

return true;
}

To act on the outcome of these three possibilities, we will use another script, as shown
in Listing 13-8. For each possible outcome, the correct score variable is increased; a sound
is played; we redraw the screen to actually show the last move and the new score; wait for a
second; show a message; and initialize the field again.

Listing 13-8. The Script scr_check_end

{
// check whether the player did win
if (scr_check_player_win())
{

score_player += 1;
sound_play(snd_win);
screen_redraw();
sleep(1000);
show_message('YOU WIN');
scr_field_init();

}
// check whether the computer did win
if (scr_check_computer_win())
{

score_computer += 1;
sound_play(snd_lose);
screen_redraw();
sleep(1000);
show_message('YOU LOSE');
scr_field_init();

}

CHAPTER 13 ■ CLEVER COMPUTERS: PLAYING T IC-TAC-TOE252

// check whether there is a draw
if (scr_check_draw())
{

score_draw += 1;
sound_play(snd_draw);
screen_redraw();
sleep(1000);
show_message("IT'S A DRAW");
scr_field_init();

}
}

We must call this script after each move by either the player or the computer.
But we still need to give the computer the power to make a move. Let’s create a very sim-

ple mechanism here; in the next section we’ll create a much more intelligent opponent. Our
simple mechanism makes a random move. We do this as follows. We select a random cell, test
whether it is empty, and if so, place the stone there. If the selected cell is not empty, we repeat
the search until we find one that is. Finding a random position works like this—we use the
function random(3) to obtain a random real number below 3. Using the floor() function, we
round this down, obtaining 0, 1, or 2. The script is shown in Listing 13-9.

Listing 13-9. The Script scr_find_move

{
var i,j;
while (true)
{

i = floor(random(3));
j = floor(random(3));
if (field[i,j] == 0)
{

field[i,j] = 2;
exit;

}
}

}

This script makes use of a while loop to find a random free cell. while(true) can be dan-
gerous, because as the expression is always true, the loop never exits by itself. In this case,
however, we are exiting in our own code as soon as an empty cell is detected, so it is safe as
long as an empty cell exists. If there are no empty cells, we already know it is a draw, so we
need not worry about that case.

We are going to use this script in an updated version of the script scr_field_click, which
we created earlier. When the player has made a valid move, there are three things we must do.
First, we check whether the player won or whether there is a draw, in which case the field is
initialized again, ready for the next game. Next, we let the computer make a move. Finally, we
check whether the computer won or whether there is a draw.

CHAPTER 13 ■ CLEVER COMPUTERS: PLAYING T IC-TAC-TOE 253

We adapt the scr_field_click script by adding a few lines, as shown in Listing 13-10.

Listing 13-10. The Adapted Script scr_field_click

{
var i,j;
// find the position that is clicked
i = floor((mouse_x-208)/140);
j = floor((mouse_y-32)/140);
// check whether it exists and is empty
if (i<0 || i>2 || j<0 || j>2) exit;
if (field[i,j] != 0) exit;
// set the stone
field[i,j] = 1;
sound_play(snd_place);
scr_check_end();
// let the computer make a move
scr_find_move();
scr_check_end();

}

Once you have added the new scripts and made the change to scr_field_click, test
the game, and you should find it is now fully operational. You can find it in the file Games/
Chapter13/tic_tac_toe2.gm6 on the CD.

The game as it stands is fine, but it is extremely easy to win as the computer plays random
moves. In the next section, we will make the computer a bit more intelligent.

A Clever Computer Opponent
To be able to make a clever computer opponent we must first be clever ourselves. How would
you play the game? What would your strategy be? If you have played the game often, here is a
strategy you might come up with:

• If there is a move available that will make you win, then play it.

• If there is no winning move available for you, but there is one available for the oppo-
nent, you’d better play that move to block them; otherwise you will lose.

• If neither is the case but the center cell is free, then play the center.

• If none of the above is true, play a random move.

This is not the best strategy possible but it is pretty good, and still leaves the player with
a chance to win, so let’s implement it. To give the game a bit more variation, we will program
the computer opponent to only do the third step half the times it is presented. We are going to
create four scripts, one for each of the four cases. The last one we already have—all we have
to do is rename it from scr_find_move to scr_find_random. The other scripts still have to be
constructed.

CHAPTER 13 ■ CLEVER COMPUTERS: PLAYING T IC-TAC-TOE254

We will start with the script that tests for the existence of a winning move for the com-
puter. If such a move exists, it is made, and true is returned. Otherwise false is returned.
The script works as follows—we consider every empty cell. We place a stone there and test
whether we won. If so, we return true. If not, we make the cell empty again and proceed with
the next empty cell. The script is shown in Listing 13-11.

Listing 13-11. The Script scr_find_win, Which Tries to Find a Winning Move

{
var i,j;
for (i=0; i<=2; i+=1)

for (j=0; j<=2; j+=1)
if (field[i,j] == 0)
{

field[i,j] = 2;
if scr_check_computer_win() return true;
field[i,j] = 0;

}
return false;

}

The next script tries to find a potential winning move for the human player. If such a posi-
tion exists, the computer places a stone there. It largely works the same, except that we are
testing for a potential row of three human player stones, not three computer player stones.
The cell is then given a value of 2 to place a computer stone there, to block the human player’s
winning move, as shown in Listing 13-12.

Listing 13-12. The Script scr_find_lose, Which Tries to Block a Winning Move of the Player

{
var i,j;
for (i=0; i<=2; i+=1)

for (j=0; j<=2; j+=1)
if (field[i,j] == 0)
{

field[i,j] = 1;
if scr_check_player_win()

{ field[i,j] = 2; return true; }
field[i,j] = 0;

}
return false;

}

Finally, we need the script that tries the center position (Listing 13-13.) It will only try it
once out of every two times.

CHAPTER 13 ■ CLEVER COMPUTERS: PLAYING T IC-TAC-TOE 255

Listing 13-13. The Script scr_find_center, Which Tries to Place a Stone in the Center

{
if (random(2) < 1 && field[1,1] == 0)

{ field[1,1] = 2; return true; }
return false;

}

With all these scripts in place, we have to remake the script scr_find_move that deter-
mines the next move of the computer. This script calls the four scripts in order and, whenever
one succeeds, it stops further processing because the opponent has made a move. This script
appears in Listing 13-14.

Listing 13-14. The New Script scr_find_move

{
if scr_find_win() exit;
if scr_find_lose() exit;
if scr_find_center() exit;
scr_find_random();

}

That’s the whole game. You can find this finished version in the file Games/Chapter13/
tic_tac_toe3.gm6 on the CD. It will be quite a bit harder to beat this opponent, and if you are
not very good at the game you will most likely lose a few times! In particular, the game might
be too difficult for young children. In the next section, we will see how we can automatically
adapt the game to the level of the player.

Adaptive Gameplay
When the player is good, we should confront him with a strong computer opponent. But when
the player is a novice, the computer opponent should be weaker. Many games achieve this by
letting the user manually select the level of the game (for example, easy, normal, or hard). But
it can be more desirable when the game automatically adapts to the level of the player. For our
game this can easily be achieved—we maintain the score of the player and the computer, so
we know who is winning. When the player is winning a lot, we can make the computer play
better, and when the player is losing a lot, we can make the computer play down its abilities.

As an indication of how good the player is, we use (score_player+1) / (score_computer+1).
The reason for adding 1 to both values is that we do not want to divide by 0, as this would
cause an error. When this value is larger than 1, the player is better than the computer. When it
is smaller than 1, the computer is better. In the scr_find_move script where we decide on the
computer move, we will also compute this value, and based on the result, we decide which
moves we check. When the value is larger than 1.2, we try all moves. When it is smaller than
0.5, we only do a random move. We add in the other two moves as the value increases. The
updated version of scr_find_move is shown in Listing 13-15.

CHAPTER 13 ■ CLEVER COMPUTERS: PLAYING T IC-TAC-TOE256

Listing 13-15. Further Adapting the Script scr_find_move

{
var level;
level = (score_player+1) / (score_computer+1);
if (level > 0.5)

{ if scr_find_win() exit; }
if (level > 0.8)

{ if scr_find_lose() exit; }
if (level > 1.2)

{ if scr_find_center() exit; }
scr_find_random();

}

You should now let a number of people play the game and see whether the game indeed
adapts to their level of play. You might want to vary the numbers in the script to make the
game easier or harder for the players.

Congratulations
You have just created your first intelligent computer opponent. Also, you have created some
adaptive gameplay, something that is very important for good games. You will find the last
version of the game in the file Games/Chapter13/tic_tac_toe4.gm6 on the CD.

You might want to extend the game even further. First, you can think a bit more about the
strategy. A very good move in the game is a move where you create two winning positions for
yourself in the next move. As the opponent can only play one of the two, you are then assured
of winning the game in the next move. You might want to add this to the strategy. Another
thing you could do is add a two-player mode in which two people can play against each other.
This is relatively easy, as there is no need for an intelligent computer opponent anymore—
here you only need to remember and indicate who is to play in each move.

The registered version of Game Maker makes available functions that make it possible to
play such a game over a network with two computers, but that is something really advanced.

In this chapter you saw how useful GML code is—we put everything in scripts. In fact, a
game like this would have been almost impossible to create without GML. And it wasn’t really
all that much work. Once you get accustomed to using GML code, you will probably start
using actions much less.

Intelligent opponents make games more interesting. In this chapter we had just one intel-
ligent opponent. In the next chapter, we will create a whole collection of intelligent enemies.

CHAPTER 13 ■ CLEVER COMPUTERS: PLAYING T IC-TAC-TOE 257

